Protective Effects of Carbon Monoxide-Releasing Molecule-2 on the Barrier Function of Intestinal Epithelial Cells
نویسندگان
چکیده
OBJECTIVE To investigate the protective effects and mechanisms of carbon monoxide-releasing molecule-2 (CORM-2) on barrier function of intestinal epithelial cells. MATERIALS AND METHODS After pre-incubation with CORM-2 for 1 hour, cultured intestinal epithelial IEC-6 cells were stimulated with 50 µg/ml lipopolysaccharides (LPS). Cytokines levels in culture medium were detected using ELISA kits. Trans-epithelial electrical resistance (TER) of IEC-6 cell monolayers in Transwells were measured with a Millipore electric resistance system (ERS-2; Millipore) and calculated as Ω/cm2 at different time points after LPS treatment. The permeability changes were also measured using FITC-dextran. The levels of tight junction (TJ) proteins (occludin and ZO-1) and myosin light chain (MLC) phosphorylation were detected using Western blotting with specific antibodies. The subsequent structural changes of TJ were visualized using transmission electron microscopy (TEM). RESULTS CORM-2 significantly reduced LPS-induced secretion of TNF-α and IL-1β. The LPS-induced decrease of TER and increase of permeability to FITC-dextran were inhibited by CORM-2 in a concentration dependent manner (P<0.05). LPS-induced reduction of tight junction proteins and increase of MLC phosphorylation were also attenuated. In LPS-treated cells, TEM showed diminished electron-dense material and interruption of TJ and desmosomes between the apical lateral margins of adjoining cells, which were prevented by CORM-2 treatment. CONCLUSIONS The present study demonstrates that CORM-2, as a novel CO-releasing molecule, has ability to protect the barrier function of LPS-stimulated intestinal epithelial cells. Inhibition of inflammatory cytokines release, restoration of TJ proteins and suppression of MLC phosphorylation are among the protective effects of CORM-2.
منابع مشابه
The Protective Effect of Heme Oxygenase-1 against Intestinal Barrier Dysfunction in Cholestatic Liver Injury Is Associated with NF-κB Inhibition.
Heme oxygenase-1 (HO-1) is reported to protect against liver injury, but little is known about its effect on the intestinal barrier in cholestatic liver injury. In this study, we investigated the effects of HO-1 and its enzymatic by-product on intestinal barrier dysfunction in bile duct ligation (BDL) rats and explored the possible mechanism. The HO-1 inducer cobalt protoporphyrin (CoPP) and ca...
متن کاملCarbon Monoxide-Releasing Molecule-2 Reduces Intestinal Epithelial Tight-Junction Damage and Mortality in Septic Rats
OBJECTIVE Damage to intestinal epithelial tight junctions plays an important role in sepsis. Recently we found that Carbon Monoxide-Releasing Molecule-2 (CORM-2) is able to protect LPS-induced intestinal epithelial tight junction damage and in this study we will investigate if CORM-2 could protect intestinal epithelial tight junctions in the rat cecal ligation and puncture (CLP) model. MATERI...
متن کاملMechanism(s) Involved in Carbon Monoxide-releasing Molecule-2-mediated Cardioprotection During Ischaemia-reperfusion Injury in Isolated Rat Heart
The purpose of the present study was to determine the mechanism(s) involved in carbon monoxide-releasing molecule-2, carbon monoxide-releasing molecule-2-induced cardioprotection. We used the transition metal carbonyl compound carbon monoxide-releasing molecule-2 that can act as carbon monoxide donor in cardiac ischaemia-reperfusion injury model using isolated rat heart preparation. Langendorff...
متن کاملHemin induces active chloride secretion in Caco-2 cells.
Enterocytes maintain fluid-electrolyte homeostasis by keeping a tight barrier and regulating ion channels. Carbon monoxide (CO), a product of heme degradation, modulates electrolyte transport in kidney and lung epithelium, but its role in regulating intestinal fluid-electrolyte homeostasis has not been studied. The major source of endogenous CO formation comes from the degradation of heme via h...
متن کاملProtective effects of lactoferrin against intestinal mucosal damage induced by lipopolysaccharide in human intestinal Caco-2 cells.
Indirect evidence suggests that lactoferrin (Lf), a major iron-binding protein in human milk, induces enterocyte growth and proliferation, depending on its concentration and affects the function and permeability of the intestinal mucosa. The bacterial endotoxin (lipopolysaccharide, LPS) is known to cause mucosal hyperpermeability in vivo. However, protective effects of Lf against LPS-mediated i...
متن کامل